1
一、 发散思维,引出课题
例题:将-4,+3,+4,-3分成两组。
1?将-4、-3分在一组,将+4、+3分为另一组,就是将负数分为一组,正数分为另一组。
2?我将-4,+4分在一组,将-3,+3分为另一组,就是把数是否相同作为分组的依据。
3?我把-4与+3分在一组,把+4与-3分在另一组。理由是两个数的符号不同,符号后面的数也不相同。
二、比较概括,提炼定义
一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法。两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数,把“符号后面的数”是否相同作为分组的依据,得到了-4与+4、+3与-3这样成对的数,那么它们又应该叫什么数呢?
这就是见天我们这节课需要你学习的内容:相反数。
为什么叫相反数而不叫别的数呢?
一个正数,一个负数,表示的意义相反,所以叫相反数。
符号不同、符号后面的数相同的两个数叫相反数。
一个数前面添上不同的符号后得到的两个数叫相反数。
师:请你举例说明。
如5前面添上“+”“-”得到的+5和-5是相反数。
课本上说“只有符号不同的两个数叫做互为相反数”
“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思。
只有符号后面的数相同的两个数叫做互为相反数。
“只有符号后面的数相同”的言外之意是“符号不同” ,与课本上的说法是一致的。由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意。需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到。
师:“互”就是“相互”的意思,如+4是-4的相反数,也可以说-4是+4的相反数,即+4与-4互为相反数。请大家一起把“+3与-3互为相反数”的意思说具体一点。
课本上特别指出(板书):0的相反数是0。
口答练习:说出下列各数的相反数:
-7, -0.5, 0, 6, +1.5
三、数形结合,深入讨论
例 请在数轴上标出表示+4的相反数的点.
0 4
从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等
相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等。
掌握了老师提到的分析问题的方法。关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习。
到现在为止,关于零的特殊性,表现在哪些方面?
生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数。
练习及解答(略)
附(部分板书)
只有符号不同的两个数,叫做互为相反数。 零的相反数还是零。
符号 相反 相反 分居原点两侧
到原点距离相等
通过这次七年级(三)班李红鸽老师的课,发现了自己的不足,加油!
愿所有的人开心快乐!!!!
2
一、创设情境,初步感知
谈话:看老师手中拿的是什么?(三角板),你能找出它有多少个角吗?
二、组织活动,探究新知
1. 认识角
投影显示:投影课本里的图片
谈话:找一找,图片上哪些像角?(学生回答)
追问:角在我们的生活中无处不在,一个角有几个顶点?几条边?能从我们身边的一些物体的面上找到角吗?找到后指出它们的顶点和边。
2. 折一个角
谈话:我们已经认识了角,能用自己灵巧的小手折一个角吗?看谁折得快折得好。(用准备好的白纸折角)
3. 角的大小比较
(1)提问:能使你折的角变得再大一些吗?你是怎么办的?能把它变得小一些吗?又是怎么做到的?
(2)钟面上的时针和分针转动时,形成了大小不同的角,同学们能比较出哪个角大些吗?用什么方法比较?
(3)谈话:观察老师手上的这两个三角形(两个纸做的一大一小的三角形),哪个三角形大些呢?还是一样大呢?你知道角的大小和什么有关吗?
三、固应用,拓展延伸
1.课本练习第1题。谈话:机灵的小猴找来了一些图形,想考考小朋友,敢接受它的挑战吗?投影展示图形:哪些是角,哪些不是角?是角的你能指出它的顶点和边吗?指名回答。
2. 课本练习第2题。谈话:好学的小猫觉得小朋友学得不错,于是来请教我们了。投影展示,图中各有几个角,说给同桌听。
3.课本练习第3、第5题。谈话:聪明的小兔看到大家的本领这么棒,终于忍不住也要来考考我们,投影展示题目。同桌讨论后在班内交流。
4. 课本练习第4题。谈话:山羊老师对大家很满意,决定带小朋友玩一玩。
动手拉、合剪刀。说说你看到的角有什么变化
四、总结全课,布置作业
谈话:通过这节课的学习,你有什么收获?回家给爸爸妈妈展示一下你今天学到的本领,找找你们家哪些物体上有角。
点评:
1. 引导学生善于从日常生活中发现教学问题,激活生活经验。
让学生充分体验数学知识,理解数学知识,并将数学知识应用于实践活动。通过“在生活中常见的物体身上找角”,使学生觉得数学与生活密切联系,增进了学生对数学价值和作用的认识,激发了学生学习数学的热情。
2. 引导学生动手实践、自主探索,促进数学思考。
注重引导学生动手实践,在操作中理解知识,发展思维。一改教师主宰课堂的局面,大胆放手,变过去的单纯看教师演示为学生自己动手,调动学生的主动性。本节课设计“找”、“说”、“做”的环节,帮助学生在数学活动中认识角、感悟角的大小,使得学习兴趣较为浓厚,也有效地培养了学生的观察能力、操作能力、表达能力及分析、概括能力。
3
第一次行动(教学)
……
1、创设情景
师:同学们看过《西游记》吗?里面的内容精彩吗?今天老师给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看它的孩儿们,它给孩儿们带来礼物??桃子,分桃子时,它想和孩儿们玩一玩,孙悟空说:"把8个桃平均分给2只猴子吧!"下面的孩儿们连连摇头:"太少了!太少了!"孙悟空就说:"那好吧,把80个桃子平均分给20只猴子,怎么样?。"小猴们得寸进尺,挠挠头皮,试探地说:‘大王,再多给点行不行啊?’孙悟空一拍胸脯,显示出慷慨大度的样子:"那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。
师:同学们谁的笑是聪明的一笑,为什么?
生1:猴王的笑是聪明的一笑。桃子的总数与猴子的总只数变了,但每只小猴子每次分到桃子的个数没有变。
生2:猴王的笑是聪明的一笑。因为猴王把小猴子给骗了,每只小猴子还是分的4个桃子。
……
2、探索规律
师:你能列出算式吗?师随机板书:
8÷2=4
80÷20=4
800÷200=4
师:请同学们仔细观察这3个算式,看看你发现了什么?在小组里说一说。
学生开始小组活动。
生1:依次扩大10倍,商还是4;
师:你是怎样观察的?
……
(接下来的汇报中有不少学生汇报并没有按照我备课的思路去回答,整个安排全部打乱,耽误了许多时间,在汇报中有的学生还发生了错误。)
反思
按照我的备课思路,自认为这一环节的教学应该很顺畅,学生应该能够顺利完成此环节教学的,怎么在实际的教学过程中会这样呢?在反思与本组教师的评课过程中我逐步认识到:自己的安排看似合理,其实没有认真考虑到学生已有的经验水平,没有站在学生的立场考虑,没有做到与学生生活世界的沟通。由于自己提出的问题过大,导致在此处的教学浪费了很多的时间。在课堂上我虽然蹲下来"扶学生,学生还是"够不着"。看来我的认识与学生在某些方面的差距是很大的。
改进策略
不要着急让学生解决这一问题,给他们一根"拐杖",要结合学生的年龄特点和认知水平,抛出的问题适当并及时地引导、点拨。因为这是一堂走出校外的观摩课,所以我根据本组教师的意见,结合自己的反思,在经过积极和独立的思考后,我对第一次的行动计划再次进行了改进,进行了第二次教学。
第二次行动(教学)
在讲了孙悟空分桃子的故事后,提问:
师:同学们谁的笑是聪明的一笑,为什么?
生1:猴王的笑是聪明的一笑。桃子的总数与猴子的总只数变了,但每只小猴子每次分到桃子的个数没有变。
生2:猴王的笑是聪明的一笑。因为猴王把小猴子给骗了,每只小猴子还是分的4个桃子。
师:你是从哪儿看出的?
※引导学生列出算式:
①8÷2=4
②80÷20=4
③800÷200=4
※引导学生进行有序地观察并探索出规律:二式和一式比较,被除数和除数都扩大了10倍,商不变;三式和二式比比较,被除数和除数都扩大了10倍,商不变;三式和一式比较,被除数和除数都扩大了100倍,从上往下看,被除数和除数同时扩大相同的倍数,商不变。
※询问学生:还有什么发现?(从下往上看,又有什么规律呢?)此环节让学生在小组交流完成。
整节课的反思
篇一:科目:数学年级:五年级授课者:张尊敬课题:方程教学过程:一、导入老师:我们去菜市场买东西用什么称呢?学生:秤、电子秤老师:那你见过这样的秤吗?出示天平二、 介绍天平它有两个托盘,中间有刻度,两天刻度相等,中间刻度为0.这就是天平。三、 探究新知,观看课件(一)等式1、 在天平的两边放入砝码,左盘:20克和30克,右盘:50克,中间刻度指向0,那么说明天平平衡了。提问:你能根据此列出一个式子吗...查看更多
接下来的教学,我与孩子们之间相处得非常融洽。学生经历了分析??综合??抽象概括的过程,这样不仅有利于学生认识规律,还有利于培养学生初步的逻辑思维能力,以及学习数学的方法。在学习的过程中,我关注了学生主体性的发挥,让学生自主探究、合作学习,使每一个孩子都能做一个新知识的发现者、研究者、探索者。
在这连续两次的教学中,使我的教学品质得到了整体提升。在以后的教学实践中,我会帮助学生发现、组织和管理知识,引导他们,而不是"制造"他们 ;要学生以自己真实的感受去体验、理解;要让更多的学生尝试成功的喜悦,让学生自始自终参与到知识形成的全过程。现在,我深深地感到:课程改革,没有休止符;课程改革,永远是现在进行时。