1篇
高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学*两本书。
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1?1、1?2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2?1、2?2、2?3
选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
一般高考大题分布
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学*数学一定要掌握科学的学*方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结
高一年级
必修一
第一章 集合与函数概念
第二章 基本初等函数(Ⅰ)
第三章 函数的应用
必修二
第一章 空间几何体
第二章 点、直线、平面之间的位置关系
第三章 直线与方程
必修三
第一章 算法初步
第二章 统计
第三章 概率
必修四
第一章 三角函数
第二章 平面向量
第三章 三角恒等变换
(二)教学要求
在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。
首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。它们是学*、掌握和使用数学语言的基础,是高中数学学*的出发点。在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。因此集合的基本概念、函数等有关内容是教师重点讲解的内容。
其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。
第三,通过对三角函数的学*,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学*,使学生在学*数学和应用数学方面达到一个新的层次。
第四,学*平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。
第五、在学*空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。
第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
第七、在学*算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。
高二年级
必修五
第一章 解三角形
第二章 数列
第三章 不等式
选修1-1
第一章 常用逻辑用语
第二章 圆锥曲线与方程
第三章 导数及其应用
选修1-2
第一章 统计案例
第二章 推理与证明
第三章 数系的扩充与复数的引入
第四章 框图
选修2-1
第一章 常用逻辑用语
第二章 圆锥曲线与方程
第三章 空间向量与立体几何
选修2-2
第一章 导数及其应用
第二章 推理与证明
第三章 数系的扩充与复数的引入
选修2-3
第一章 计数原理
第二章 随机变量及其分布
第三章 统计案例
(二)教学要求
高二上
必修5
学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
选修1?1(文科)
在本模块中,学生将在义务教育阶段的基础上,学*常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学*平面解析几何初步的基础上,在本模块中,学生将学*圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。
选修2-1(理科)
在本模块中,学生将学*常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
在本模块中,学生将在义务教育阶段的基础上,学*常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。
在必修阶段学*平面解析几何初步的基础上,在本模块中,学生将学*圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
在本模块中,学生将在学*平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。
高二下(文科)
在必修课程学*统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
“推理与证明”是数学的基本思维过程,也是人们学*和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,但是数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法),感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的*惯。
数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学*复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。框图已经广泛应用于算法、计算机程序设计、工序流程的表述、设计方案的比较等方面,也是表示数学计算与证明过程中主要逻辑步骤的工具,并将成为日常生活和各门学科中进行交流的一种常用表达方式。在本模块中,学生将学*用“流程图”、“结构图”等刻画数学问题以及其他问题的解决过程;并在学*过程中,体验用框图表示数学问题解决过程以及事物发生、发展过程的优越性,提高抽象概括能力和逻辑思维能力,能清晰地表达和交流思想。
高二下(理科)
微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性、极值等性质中的作用,初步了解定积分的概念,为以后进一步学*微积分打下基础。通过该模块的学*,学生将体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。
“推理与证明”是数学的基本思维过程,也是人们学*和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新的结论的推理过程。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的*惯。
数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生发展的客观需求和背景,复数的引入是中学阶段数系的最后一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学*复数的一些基本知识,体会数系扩充中人类理性思维的作用。
计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本模块中,学生将学*计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。
在必修课程学*概率的基础上,学*某些离散型随机变量分布列及其均值、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。
在必修课程学*统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
高三年级
选修4-1
第一章相似三角形的判定及有关性质
第二章直线与圆的位置关系
第三章圆锥曲线性质的探讨
选修4-4
第一章 坐标系
第二章 参数方程
选修4-5
第一章不等式和绝对值不等式
第二章证明不等式的基本方法
第三章柯西不等式与排序不等式
第四章数学归纳法证明不等式
(二)教学重点难点
1.认真学*“一标两纲一本”(《课程标准》、《数学教学大纲》、《考试大纲》和课本)。重视对《考试大纲》的研究,并结合对近年高考题的`认真分析,深化对高考题的认识,明确考试要求,克服盲目性,增强自觉性,更好地指导考生进行复*。
2.立足基础,突出重点,这是高考试卷构成的主题。基本知识、基本技能、基本方法始终是高考试题考查的重点。在切实重视基础知识的落实中重视基本技能与基本方法的培养。
3.搞好数学思想方法的体现和发掘,发展理性思维。基本思想和方法分散地渗透在中学数学教材的各个内容之中,在平时的教学中,教师和学生把主要精力集中于数学新课的教学之中,缺乏对基本思想和方法的归纳和总结,在高考前的复*过程中,教师要在传授知识的同时有意识地、恰当地讲解和渗透数学的基本思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样,考生在高考中才能灵活运用和综合运用所学的知识。高考提出“以能力立意命题”,正是为了更好地考查数学思想,促进考生数学理性思维的发展。因此,要加强如何更好地考查数学思想的研究,特别是要研究试题解题过程的思维方法,注意考查不同思维方法的试题的协调和匹配,使考生的数学理性思维能力得到较全面的提高。
4.注意数学应用问题。新教学大纲指出:要增强用数学的意识,一方面通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律,另一方面更重要的是能够运用已有的知识将实际问题抽象为数学问题,建立数学模型。解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
5.彰显创新意识,挖掘潜在能力(以课本为主干,重点研究开放性问题,创新问题,数形结合问题等)。高考对创新意识的考查,主要是要求考生不仅仅能理解一些概念、定义,掌握一些定理、公式,更重要的是能够应用这些知识和方法解决数学中和现实生活中的比较新颖的问题。数学教育的目的不单单是让学生掌握一些知识,也不是把每个人都培养成数学家,而是把数学作为材料和工具,通过数学的学*和训练,在知识和方法的应用中提高综合能力和基本素质,形成科学的世界观和方法论。因此,高考对创新意识的考查其意义已超出了数学学*,对提高学*和工作能力,对今后的人生都有重要的意义。
6.回归教材本源,发挥课本功能。数学复*,任务重,时间紧,但绝不可因此而脱离教材.相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、节的知识在整体中的地位、作用.近年来高考每年的试题都与教材有着密切的联系,有的是将教材中的题目略加修改、变形后作为高考题目;还有的是将教材中的题目合理拼凑、组合作为高考题的.因此,一定要高度重视教材。
(三)教学建议
高三文、理科对4?系列的选修都是在4?1,4?4,4?5中三选二。
选修4?1 几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复*相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想像能力、几何直观能力和运用综合几何方法解决问题的能力。
内容与要求
1. 复*相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。
2. 证明圆周角定理、圆的切线的判定定理及性质定理。
3. 证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
4. 了解平行投影的含义,通过圆柱与平面的位置关系,体会平行投影;证明平面与圆柱面的截线是椭圆(特殊情形是圆)。
5. 通过观察平面截圆锥面的情境,体会给定的定理。
选修4?4坐标系与参数方程
坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。
本专题是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化。极坐标系和参数方程是本专题的重点内容,对于柱坐标系、球坐标系等只作简单了解。通过对本专题的学*,学生将掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力。
内容与要求
1. 坐标系
(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。
2. 参数方程
(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。
(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。
选修4-5:不等式选讲。
本专题将介绍一些重要的不等式和它们的证明、数学归纳法和它的简单应用。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。
内容与要求
1. 回顾和复*不等式的基本性质和基本不等式。
2. 理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:
3. 了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。
4. 会用不等式证明一些简单问题。
5. 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。
2篇
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .
8.充要条件
二、函 数
1.指数式、对数式,
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.
推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.
推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
(3)函数 与函数 的图像关于坐标原点中心对称.
推广:曲线 关于直线 的对称曲线是 ;
曲线 关于直线 的对称曲线是 .
(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .
如果 是R上的周期函数,且一个周期为 ,那么 .
特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .
三、数 列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意: ; .
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) ; .
(3) 、 也成等差数列.
(4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5) 仍成等差数列.
(8)“首正”的递等差数列中,前 项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(3) 、 、 成等比数列; 成等比数列 成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.
(6)通项转换法。
四、三角函数
1. 终边与 终边相同( 的终边在 终边所在射线上) .
终边与 终边共线( 的终边在 终边所在直线上) .
终边与 终边关于 轴对称 .
终边与 终边关于 轴对称 .
终边与 终边关于原点对称 .
一般地: 终边与 终边关于角 的终边对称 .
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意: ,
4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
常值变换主要指“1”的变换:
等.
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹? ’的联系”(常和三角换元法联系在一起 ).
辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.
(4)面积公式: .
五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).
3.两非零向量平行(共线)的充要条件
.
两个非零向量垂直的充要条件
.
特别:零向量和任何向量共线. 是向量平行的充分不必要条件!
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.
5.三点 共线 共线;
向量 中三终点 共线 存在实数 使得: 且 .
6.向量的数量积: , ,
,
.
注意: 为锐角 且 不同向;
为直角 且 ;
为钝角 且 不反向;
是 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).
7.
注意: 同向或有 ;
反向或有 ;
不共线 .(这些和实数集中类似)
8.中点坐标公式 , 为 的中点.
中, 过 边中点; ;
. 为 的重心;
特别 为 的重心.
为 的垂心;
所在直线过 的内心(是 的角平分线所在直线);
的内心.
.
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用)
a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
同号或有 ;
异号或有 .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).
6.不等式的恒成立,能成立,恰成立等问题
(1).恒成立问题
若不等式 在区间 上恒成立,则等价于在区间 上
若不等式 在区间 上恒成立,则等价于在区间 上
(2).能成立问题
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .
(3).恰成立问题
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .
注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)
与直线 平行的直线可表示为 ;
与直线 垂直的直线可表示为 ;
过点 与直线 平行的直线可表示为:
;
过点 与直线 垂直的直线可表示为:
.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .
注:点到直线的距离公式
.
特别: ;
;
.
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程 ;标准方程 ;
一般式方程 ;
参数方程 为参数);
直径式方程 .
注意:
(1)在圆的一般式方程中,圆心坐标和半径分别是 .
(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:
, ,
,
.
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: .
如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.
如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).
7.曲线 与 的交点坐标 方程组 的解;
过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:
2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
注意:等轴双曲线的意义和性质.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
( , , )或“小小直角三角形”.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
特别声明:
①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.
②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.
③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;
如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.
如正四面体和正方体中:
5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.
9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导 数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .
2.多项式函数的导数与函数的单调性:
在一个区间上 (个别点取等号) 在此区间上为增函数.
在一个区间上 (个别点取等号) 在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数 在 处有 且“左正右负” 在 处取极大值;
函数 在 处有 且“左负右正” 在 处取极小值.
注意:①在 处有 是函数 在 处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;
函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小